Neural mechanisms underlying binocular fusion and stereopsis: position vs. phase.
نویسندگان
چکیده
The visual system utilizes binocular disparity to discriminate the relative depth of objects in space. Since the striate cortex is the first site along the central visual pathways at which signals from the left and right eyes converge onto a single neuron, encoding of binocular disparity is thought to begin in this region. There are two possible mechanisms for encoding binocular disparity through simple cells in the striate cortex: a difference in receptive field (RF) position between the two eyes (RF position disparity) and a difference in RF profile between the two eyes (RF phase disparity). Although there have been studies supporting each of the two encoding mechanisms, both mechanisms have not been examined in a single study. Therefore, the relative roles of the two mechanisms have not been determined. To address this issue, we have mapped left and right eye RFs of simple cells in the cat's striate cortex using binary m-sequence noise, and then we have estimated RF position and phase disparities. We find that RF position disparities are generally limited to small values that are not sufficient to encode large binocular disparities. In contrast, RF phase disparities cover a wide range of binocular disparities and exhibit dependencies on orientation and spatial frequency in a manner expected for a mechanism that encodes binocular disparity. These results indicate that binocular disparity is mainly encoded through RF phase disparity. However, RF position disparity may play a significant role for cells with high spatial frequency selectivity, which are constrained to small RF phase disparities.
منابع مشابه
The relative sensitivities of sensory and motor fusion to small binocular disparities
Horizontal binocular disparity is the fundamental stimulus for both fusional vergence and stereopsis, but whether common disparity-sensitive mechanisms are involved in both responses is unknown. To determine whether the sensitivities of motor and sensory fusion are interdependent, we studied vergence eye movements and depth discrimination, using stimuli with haplopic binocular disparities, in s...
متن کاملBinocular vision
This essay reviews major developments - empirical and theoretical - in the field of binocular vision during the last 25years. We limit our survey primarily to work on human stereopsis, binocular rivalry and binocular contrast summation, with discussion where relevant of single-unit neurophysiology and human brain imaging. We identify several key controversies that have stimulated important work...
متن کاملNeural mechanisms for encoding binocular disparity: receptive field position vs. phase
The visual system utilizes binocular disparity to discriminate the relative depth of objects in space. Since the striate cortex is the first site along the central visual pathways at which signals from the left and right eyes converge onto a single neuron, encoding of binocular disparity is thought to begin in this region. There are two possible mechanisms for encoding binocular disparity throu...
متن کاملA computational theory of da Vinci stereopsis.
In binocular vision, occlusion of one object by another gives rise to monocular occlusions—regions visible only in one eye. Although binocular disparities cannot be computed for these regions, monocular occlusions can be precisely localized in depth and can induce the perception of illusory occluding surfaces. The phenomenon of depth perception from monocular occlusions, known as da Vinci stere...
متن کاملBehavioral studies of local stereopsis and disparity vergence in monkeys
Investigations on macaque monkeys have provided much of our knowledge of the neural mechanisms of binocular vision, but there is little psychophysical data on the accuracy of vergence responses or the precision of stereoscopic depth perception in these primates. We have conducted comparative behavioral studies of binocular disparity processing in rhesus monkeys and humans via measurements of pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 94 10 شماره
صفحات -
تاریخ انتشار 1997